
Demchak et al. Rich Feeds for RESCUE

Rich Feeds for RESCUE

Barry Demchak
University of California, San Diego – Calit2

bdemchak@ucsd.edu

Ingolf H. Krüger
University of California, San Diego – Calit2

ikrueger@ucsd.edu

ABSTRACT

Effective responses to emergency situations require accessing both information that is known ahead of time and
information from emergent sources. Whereas emergency providers have succeeded in formalizing acquisition and
distribution of information from pre-existing sources, emergent and unconventional sources remain a challenge,
especially in the context of rapid system-of-systems integration.

The Rich Feeds project demonstrates the use of the Rich Services architectural pattern to incorporate data capture
facilities into a framework that attends to crosscutting concerns such as authentication, authorization, encryption,
and governance. By organizing a system-of-systems, Rich Services fosters the rapid incorporation of novel data
sources while promoting scalability, low overall system risk, and fine grained policy definition and evaluation.

In this paper, we demonstrate Rich Feeds’ use of Rich Services in accessing multiple data streams during research
and disaster drills. Additional opportunities include adding data sources and extraction methods, and increasing
flexibility of policy definition and evaluation.

Keywords

Service Oriented Architecture, SOA, Rich Service, ESB, Enterprise Service Bus, COTS, Integration, AJAX

INTRODUCTION

During an emergency, the need for actionable information is often acute, and the kind of information needed is often
hard to predict in advance. While emergency providers and the press have demonstrated the use of conventional and
prearranged data sources to create a general awareness and enable decision making, much work remains in order to
expose and integrate unconventional and emergent data sources for either real time or archival analysis.
Furthermore, incorporating such feeds into emergency data systems on short notice (or even under normal
circumstances) risks system instability because of the arduous programming mechanics involved in acquiring these
feeds, the multiple stakeholder concerns that must be addressed, and the difficulty of scaling such systems so they
are performant under high demand.

Rich Feeds is a sub-project of the RESCUE (“Responding to Crises and Unexpected Events”) project (Calit2
RESCUE Project, 2007), whose goal is to gather, maintain, leverage, and present information pertinent to an
emergency so that emergency response networks and the general public can quickly and accurately understand the
situation and the resources available – ultimately to aid in making decisions that save lives, save infrastructure, and
reestablish normalcy. Other RESCUE sub-projects include data feeds from the Calit2 Traffic Reporting System
(Calit2 RESCUE Traffic, 2007) and the Calit2 Tracked Objects System. (The Traffic Reporting System is a peer-to-
peer traffic incident registry, and the Tracked Objects System leverages the cellular phone network to associate
position and velocity with objects of interest.)

Rich Feeds is a work in progress that demonstrates how unconventional data feeds (including RESCUE research
feeds) and emergent data feeds can be captured, preserved, integrated, and exposed in either real time or after the
fact. To achieve this, Rich Feeds overcomes numerous challenges:

• incorporating data from producers not well positioned to support Rich Feeds

• distributing data to consumers without knowing in advance how such data will be analyzed or integrated

• allowing data to be added and accessed subject to policies defined by the producers, consumers, and system
operators

• supporting data access by external systems as part of a larger systems framework

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008
F. Fiedrich and B. Van de Walle, eds.

566

Demchak et al. Rich Feeds for RESCUE

To meet these challenges, we based Rich Feeds’ design on a Service Oriented Architecture (SOA) pattern called
Rich Services (Arrott, M. , Demchak, B., Ermagan, V., Farcas, C., Farcas, E., Krüger, I.H., and Menarini, M., 2007;
Demchak, B., Farcas, C., Farcas, E., and Krüger, I. H., 2007), which delivers the benefits of SOA in a system-of-
systems framework using a specialized agile development process. Rich Feeds is a hierarchically decomposed
system that integrates data producers, data consumers, and data storage and streaming facility into a structure that
services crosscutting concerns such as authorization, authentication, and governance flexibly and reliably. Rich
Feeds’ service oriented architecture allows the addition of new data producers and consumers quickly and with low
risk to existing functionality while providing clear paths to high scalability. Its agile development process recognizes
the constantly emerging requirements of systems that serve emergency situations and the short timeframes in which
stakeholders must be serviced.

This paper describes the challenges involved in using Rich Services and its development process in creating and
evolving the Rich Feeds application. It presents the Rich Services architectural pattern and development process as a
candidate solution, and it describes and discusses the Rich Feeds prototype that resulted from their use.

The Challenges

Acquiring Data from Producers – Rich Feeds must acquire data from either from other RESCUE sub-projects or
from sources that emerge during an emergency. In either case, such data is generally produced and maintained in
some form convenient to the producer, and usually without concern for making it available to third parties or
applications such as Rich Feeds. Consequently, systems that expose such data must be taken as-is, without expecting
accommodations for Rich Feeds. Furthermore, the schema and delivery methods for such data may be changed by
the producer based solely on its own needs, and not in coordination with Rich Feeds. The Rich Feeds design meets
this challenge by isolating producer systems, and integrating them into a standards-based framework one by one.

Make Data Available to Consumers – Consumers of Rich Feeds data include emergency data systems and
researchers seeking new insights. In either case, a consumer must discover the list of feeds available, learn the
schema for each feed, and acquire the actual data. Depending on the needs and capabilities of the consumer, Rich
Feeds must make the feed list, schema, and data available on either a query basis or an event stream basis. The Rich
Feeds design meets this challenge by provided standards-based interfaces (such as HTTP, Web Service, streams, and
so on) to match the interface styles likely of interest to consumers.

Enable Policy-driven Access Decisions – Each class of stakeholder has interests that must be addressed and
enforced by Rich Feeds. The Rich Feeds design meets this challenge by formulating such interests as policies, which
must be applied in particular circumstances so as to enable or constrain services delivered to other stakeholders.
Each stakeholder is free to create such policies independently of other stakeholders, and the Rich Feeds design
enforces these policies. For example, a Producer may have a policy that its data must be accessible only to particular
Consumers, and then only at a particular resolution. A Consumer may have a policy that data it receives must have
been produced only by a particular experimenter. An Operator may have a policy that a particular Consumer can
obtain a particular data rate, or that all data accesses are logged for auditing and accounting purposes.

Enable Interaction with External Systems – While Rich Feeds must be able to make data available to external
systems, it must also cooperate with such systems in workflow and choreography operations. These systems may
query and set policy, create new feeds as composites and transformations of existing feeds, and query operational
data. The Rich Feeds design addresses this challenge by exposing precise and well-defined interfaces which it
services using encapsulated services and components.

Taken together, these challenges imply other important requirements for Rich Feeds:

Authentication and Authorization – In order to enforce most types of policy, the identity of actors must be reliably
and unambiguously established. Furthermore, a policy model must be established wherein policies can be defined
and evaluated independently of any particular Producer, Consumer, or feed. The model must account for an actor’s
identity and its capabilities in executing a particular operation in a particular context.

Concerns Clearly Separated – Implicit in all of the challenges listed above is the need to make changes to Rich
Feeds quickly, cheaply, reliably, and without introducing processing errors in already-stable code. Similarly,
crosscutting concerns such as authentication, authorization, policy management, encryption, and system
management must each be independently modifiable and retargetable so as to achieve a high level of flexibility at
low maintenance risk. Rich Feeds must be designed to keep separate concerns separated at all levels of the
architecture and code.

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008
F. Fiedrich and B. Van de Walle, eds.

567

Demchak et al. Rich Feeds for RESCUE

A SERVICE-ORIENTED APPROACH

Our approach to the design of the Rich Feeds system involves the characterization and analysis of the provider,
consumer, and operations services in a Service Oriented Architecture (SOA).

In the popular press, the term service is often shorthand for a Web Service, and the term Service Oriented
Architecture involves the use of Web Services to create Internet-based applications by leveraging existing
technologies to create standards-based interactions (such as HTTP/SOAP, XML, WSDL, and UDDI) between code
entities. While these facilities enable the construction of distributed and loosely coupled systems on the Internet,
they do not address the more generic problems of understanding the relationships between entities, and designing
systems that effectively and reliably leverage these relationships.

In Rich Feeds, our use of these terms is more basic and generic – a service is defined as a choreography of
interactions between entities (Krüger, I. H., 2004), and can be discussed independently of the particular technologies
used to implement it (Krüger, I. H., Mathew, R., Meisinger, M., 2006). A service description focuses on well-
defined roles played by the entities, and the interactions between them. A Service Oriented Architecture (SOA) is an
architectural style that models system functionality as a collection of roles and the interactions between them;
creating a SOA involves identifying roles and the services that include them. A SOA can be a model of either the
logical level, the deployment level, or both.

At the logical level, a SOA models roles and interactions independently of how they are implemented or deployed. It
decomposes a system into well-defined, encapsulated, and extensible services that contribute to the immediate and
long term business goals of the system’s users. Services can be composed of other services, can act as proxies for
other services, or can stub out services as needed. Service-oriented analysis can lead to the separation of concerns
and the identification and modeling of crosscutting concerns, thus contributing to long term system reliability,
extensibility, and maintainability. In the Rich Feeds context, examples of crosscutting concerns include
authorization, authentication, encryption, and logging.

At the deployment level, a SOA models services as interactions between loosely coupled components that
implement the roles modeled at the logical level. Such components are self-contained, thus encouraging component-
level interoperability and adherence to standards. In Rich Feeds, communications between components is carried out
via messages – the combination of messaging and standards compliant self-contained components enables a great
deal of flexibility in deploying components and managing their interactions. Similar to the logical level, components
can be composed of other components, can modify information flow by intercepting messages exchanged between
components, and can stub out component processing as needed.

At both the logical level and the deployment level, SOAs provide value by encouraging manageability, scalability,
dependability, testability, malleability, interoperability, composition, and incremental development.

Rich Services

We based the Rich Feeds design on a Rich Services architectural pattern and development model. The architectural
pattern leverages the composite pattern (Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995) and the
messaging and routing patterns (Hohpe, G. and Woolf, B., 2004) to create a system of systems. The development
model provides a means whereby application requirements can be factored into roles and the services that involve
them, thereby leading to both logical level and deployment level SOAs. The Rich Services model creates an efficient
and effective process by helping to identify crosscutting concerns early in development, and by allowing agile-style
iteration at every stage.

We modeled Rich Feeds as a system composed of three kinds of systems: the Provider systems, the Consumer
systems, and the Integration system. The Provider systems are provided and controlled by experimenters or
emergent providers – they collect data and expose it. The Consumer systems are provided and controlled by
researchers and emergency systems – they analyze and visualize data. The Integration layer consists of a database,
interfaces to the Provider and Consumer systems, and processing for crosscutting concerns.

A Rich Service architecture organizes systems-of-systems into a hierarchically decomposed structure that supports
both “horizontal” and “vertical” service integration (see Figure 1). Horizontal service integration refers to managing
the interplay of application services and the corresponding crosscutting concerns at the same logical or deployment
level. Vertical service integration refers to the hierarchical decomposition of one application service (and the

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008
F. Fiedrich and B. Van de Walle, eds.

568

Demchak et al. Rich Feeds for RESCUE

crosscutting concerns pertaining to this service) into a set of sub-services such that their environment is shielded
from the structural and behavioral complexity of the embedded sub-services and the form of their composition.

There are three main entities in a Rich Service architecture: Rich Services, Messengers and the Router/Interceptors,
and Service/Data Connectors. A Rich Service encapsulates the various application and infrastructure functionalities,
which may themselves be decomposed as Rich Services. The Messenger and the Router/Interceptor together form
the internal communication infrastructure linking Rich Services. The Service/Data Connector serves as the sole
mechanism for interaction between a Rich Service and its environment.

A Rich Service could be a simple functionality block such as a Commercial Off The Shelf (COTS) system
(Ermagan, V., Farcas, C., Farcas, E., Krüger, I. H., and Menarini, M., 2007) or a Web service, or it could be
hierarchically decomposed. We distinguish between two kinds of Rich Services: Rich Application Services (RAS)
and Rich Infrastructure Services (RIS). RASs interface directly with the Messenger, and provide core application
functionality such as data collection and database access. RISs interface directly with the Router/Interceptor, and
provide infrastructure and crosscutting functionality such as logging, authentication, and authorization.

Messenger

Router/Interceptor

Policy

S
er

vi
ce

/D
at

a
C

on
ne

ct
or

Messenger

Router/Interceptor

Failure
Manager

...

<<Rich Service>> S
S

er
vi

ce
/D

at
a

C
on

ne
ct

or

...
<<Rich Service>> S.n

Service/Data
Connector }<<

Rich
Infrastructure

Services
>>

Encryption
Service/Data

Connector

Logging
Service/Data

Connector

Failure Manager

Service/Data
Connector

...

Service/Data
Connector

S.1

Service/Data
Connector

S.2

Service/Data
Connector

}
<<

Rich
Application
Services

>>

S.n.2

Service/Data
Connector

S.n.m

Service/Data
Connector

}

<<
Rich

Application
Services

>>

S.n.1

Service/Data
Connector

Service /Data
Connector

Logging

Service/Data
Connector

Encryption

Service/Data
Connector

Policy ...

Service /Data
Connector

Service/Data
Connector

<<
Rich

Infrastructure
Services

>>}

Figure 1. Rich Services Architectural Pattern

The Messenger and Router/Interceptor support horizontal integration by routing messages between Rich Services.
The Messenger layer is responsible for message transmission between services – by providing the means for
asynchronous messaging, the Messenger supports decoupling of services. The Router/Interceptor intercepts
messages carried by the Messenger and reroutes them. Leveraging the interceptor pattern (Schmidt, D., Stal, M.,
Rohnert, H., and Buschmann, F., 2000) facilitates dynamic behavior injection based on the interactions among
services. This is useful for the injection of policies (such as crosscutting behaviors) governing the integration of a set
of horizontally decomposed services.

The Service/Data Connector is the means by which Rich Services are connected to an external communication
infrastructure. It encapsulates and hides the internal structure of the connected Rich Service, and exports only the
interfaces that the connected Rich Service intends to provide and expose. This encapsulation helps tackle the vertical
integration challenge introduced by systems-of-systems by precisely identifying the interfaces contributed by a Rich
Service.

In this architecture, each Rich Service can be decomposed into further Rich Services, with the Service/Data
Connector acting as a gateway responsible for routing messages between layers. Additionally, the use of the
Router/Interceptor layer removes dependencies between services and their relative locations in the logical hierarchy.

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008
F. Fiedrich and B. Van de Walle, eds.

569

Demchak et al. Rich Feeds for RESCUE

This approach enables services from different levels of a hierarchy, possibly with different properties (such as
logging and auditing requirements) to interact with each other seamlessly without ever being aware of such
differences.

Use of Rich Services in Rich Feeds

As the number of stakeholders of a SOA project grows, so typically does the number and complexity of various
business concerns (such as governance, security, and policy) and their level of distribution across the architecture.
We chose to model Rich Feeds on a Rich Services architecture in anticipation of this complexity – Rich Services
provides a framework that decouples these concerns, thereby promoting scalability, extensibility, maintainability,
and reliability. Additionally, the flexibility of Rich Services’ horizontal and vertical decomposition allows the
alignment of the Rich Feeds architecture to the relationships between the stakeholders, thereby promoting
understandability and maintainability.

At the logical level, the Rich Feeds architecture models the relationship between the Integration system, the
Producer systems, and the Consumer systems. As shown in Figure 2, at the core of the Integration system is a
database that stores data acquired from the Producer systems and makes it available to the Consumer systems. While
the Producer systems are modeled as services from the perspective of the Integration system, they are actually RASs
decomposed into adapters and the data acquisition systems provided by the experimenters and emergency networks.
Similarly, while the Consumer systems are modeled as services, they are actually RASs decomposed into adapters
and analysis/visualization systems.

Authorization
Monitor

Authentication
Monitor

Integration System

ODBC
Adapter

Database

Logging
System

Service/
Data

Connector

Visualizer
Client

Consumer
Adapter

Consumer Systems

Service/
Data

Connector

Producer
Adapter

Experiment
Server

Producer Systems

Figure 2. Rich Feeds Conceptual Architecture

Within the Integration system, infrastructure services implement crosscutting concerns such as authentication,
authorization, and logging. Regardless of their source, messages sent to the Database service (for storing or
retrieving data) are passed amongst infrastructure services according to a routing defined at application
configuration time. In this case, messages are intercepted first by the authentication RIS, then by the authorization
RIS, and finally by the logging RIS. By separating concerns in this way, the database RAS need not be security-
aware, and the RISs need not be database-aware.

The Integration system’s Service/Data Connector defines access to Rich Feeds from outside clients, and consists of a
standards-based Open Database Connector interface.

At the deployment level, the Rich Feeds architecture demonstrates the relationship between the Integration system
and the Producer and Consumer systems, an example of which is shown in Figure 3. The Messenger and
Router/Interceptor portion of the Integration system is implemented by ActiveMQ and version 1.4.3 of the Mule
Enterprise Service Bus (ESB) (MuleSource, 2007). ActiveMQ transports the messages, and Mule determines the
RASs and RISs to which the messages are routed. Under Mule, messages are routed to code modules (called UMOs)

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008
F. Fiedrich and B. Van de Walle, eds.

570

Demchak et al. Rich Feeds for RESCUE

written in Java and called Plain Old Java Objects (POJOs). The MySQL database COTS is interfaced to the ESB
using such a POJO. The Producer and Consumer systems are implemented by a combination of a POJO, an Internet-
facing application adapter, the Internet itself, and experiment and emergency network servers or client visualizers.
The Integration system RISs are implemented as POJOs that intercept messages passed to the database POJO. (The
particular routing of messages between RAS and RIS POJOs is set up at Mule configuration time.)

Mule ESB with ActiveMQ

Authentication
Monitor

Authorization
Monitor

Integration System

ODBC Adapter

POJO Interface
+

Consumer Adapter

POJO Interface
+

Provider Adapter

POJO Interface
+

MySQL Database

Logging
System

Traffic
Server

Tracked
Object
Server

Browser,
Javascript ,

Google Maps

Producers Consumers
Figure 3. Rich Feeds Deployment Architecture

In this diagram, the Integration System consists of the ODBC Adapter (Microsoft Corporation, 2007), the Database
RAS, and RISs for authentication, authorization, and logging. The Database RAS consists of the POJO/Database
pair, which accepts messages containing queries and returns messages containing data or an error code. All such
messages have an internally defined XML format, which is also processed by the ODBC Adapter and the RISs.

There are two producers: the Calit2 Traffic Reporting System and the Calit2 Tracked Objects System. For each
producers, there is a POJO/Adapter pair that queries the provider server for new data, and then sends new data to the
POJO/Database pair. Both producers make their feeds available in proprietary formats: RSS for the Traffic system,
and a proprietary format for the Tracked Objects system. The POJO/Adapters reformulate the data into the
POJO/Database’s XML format, and then insert the XML document onto the ESB, destined for the POJO/Database
pair.

Similarly, there is one consumer: the Rich Feeds browser-based AJAX application. The AJAX application queries
its POJO/Adapter pair to determine the list of available feeds and their schemas, and then to download data. The
AJAX application uses HTTP to submit an SQL query, and the POJO/Adapter pair acts as an HTTP server – it
reformulates the query into the POJO/Database’s XML format and inserts it onto the ESB, destined for the
POJO/Database pair.

Along the way, Mule routes the query message to the Authentication Monitor, the Authorization Monitor, and then
the Logging System RIS. In the Authentication Monitor, if the message contains valid credentials, the credentials are
replaced by a list of credential-specific capabilities, and then the message is reinserted onto the ESB – otherwise, the
message is returned to the sender along with an error status. Next, in the Authorization Monitor, if the message’s
query matches the credentials, the credentials are removed from the message, and then the message is reinserted
onto the ESB – otherwise, the message is returned to the sender along with an error status. Next, the message is
logged by the Logging System, is reinserted onto the ESB, and then arrives at the POJO/Database RAS.

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008
F. Fiedrich and B. Van de Walle, eds.

571

Demchak et al. Rich Feeds for RESCUE

Development Methodology

Traditional component-oriented software development focuses on defining component blocks and the interactions
between them, leaving crosscutting concerns to be layered in toward the end of the design process. This results in
retrofitting and backtracking as accommodations to these concerns. In contrast, we used the Rich Services
development process (Demchak, et al, 2007) because it focuses on requirements, entities, and interactions, thereby
resulting in early discovery and integration of crosscutting concerns. Additionally, this process produces a logical
architecture separate from a deployment architecture, and a mapping between them. Consequently, an investment in
a logical architecture can be leveraged into a number of deployment options, depending on the availability and
configuration of computing resources.

As shown in Figure 4, the Rich Services development process is an iterative process having three phases, each with
one or more stage. Each phase or stage can be iterated a number of times in order to achieve an implementation that
satisfies an application’s requirements. While this approach applies well to initial system design, it applies equally
well when requirements are changed, as is often the case when adapting to emergent scenarios – an iteration can
begin at any phase or stage, and can be worked through to achieve an appropriate logical or deployment architecture.

Rich Services Virtual Network

 Rich Services
RAS4

Services

Service S1

Roles

U1

U2

U3

U4

U5

Use Case Graph

Concerns
C1 C2 C3

C4
CC1

CC2CC3

Domain Model

R1 R2

R3 R4

R5 R6

R1 R2

msg

R3

CC1
CC2

Role Domain Model

R1 R2

R3 R4

R5 R6

CC1 CC2 CC3

Router/Interceptor

Messenger/Communicator

RAS1 RAS2

CC1 CC4 CC5

Router/Interceptor

Messenger/Communicator

RAS5 RAS6RAS3

S
/
D

S
/
D

RIS:

RIS:

S
er

vi
ce

 E
lic

ita
tio

n
R

ic
h

Se
rv

ic
e

Ar
ch

ite
ct

ur
e

RAS7

System of Systems Topology

H1 H2

H3

H5

H6

H7

H8

H9H4

RAS1 RAS2 RAS3

RAS5 RAS6 RAS7

Infrastructure Mapping

H1:RAS1 H2:RAS2

H3:CC1

H5:RAS2

H6:RAS5

H7:RAS7H8:RAS7

H9:RAS6

H4:RAS3

O
pt

im
iz

at
io

n Implementation
RAS1 RAS2

RAS3 RAS4

RAS5 RAS6

RAS7 CC1

CC2 CC3

CC4 CC5

A
na

ly
si

s

S
yn

th
es

is

A
na

ly
si

s

Id
en

tif
ic

at
io

n

D
ef

in
iti

on

C
on

so
lid

at
io

n
Refinement

Hierarchic
composition

Refinement

Logical Model

Sy
st

em
 A

rc
hi

te
ct

ur
e

D
ef

in
iti

on

Logical Architecture Loop

Deployment Loop

Figure 4. Rich Services Development Process

In the Service Elicitation phase, system requirements are captured and analyzed, resulting in a role domain model
and a service repository. The Rich Service Architecture phase defines a hierarchic set of Rich Services as a logical
model incorporating the role domain model and the service repository. The System Architecture Definition phase
establishes the relationship between the logical model and the deployment model.

A RICH FEEDS PROTOTYPE

We created a working prototype of the Rich Feeds system on the RESCUE server at Calit2 (Calit2 RESCUE Rich
Feeds, 2007), and it was used to improve situational awareness during an active shooter drill at the University of
California, San Diego (UCSD) and the San Diego firestorms, both in October, 2007. For the active shooter drill, it
showed the position and video feed associated with a mobile robot, and for the firestorms, it integrated traffic
incident positions with geographically diverse live feed video cameras.

The producers include those shown in Figure 3 in addition to live camera feeds provided by the High Performance
Wireless Research and Education Network (HPWREN) (Baker, J., 2007) and the UCSD Police Department. Each

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008
F. Fiedrich and B. Van de Walle, eds.

572

Demchak et al. Rich Feeds for RESCUE

producer contributes data unique to its experiment or data source, with each data element being tagged with a
producer -determined timestamp and GPS location. For example, a Traffic System data element includes the time of
a traffic incident report, the GPS location of the incident, the identity of the person making the report, and a
reference to an audio clip of the actual incident report. A Tracked Objects System data element includes the time of
the report, the GPS location of an object, the speed and direction of the object, and the object’s name and alias.

The consumer is a browser-based
AJAX application (Figure 5) that
queries the Rich Feeds server to
determine the list of feeds it hosts,
and then makes the feeds available
for a user to select via a browser
form. Along with the feed list, the
server provides the schema for
each feed, including profiling
information that allows the user to
create filters on each feed.
Periodically, the AJAX application
queries the server to acquire data
that matches the filters for each
feed selected by the user. Any data
returned by the server is plotted on
a Google Map, with each feed
being represented by a different
style of marker. By clicking on a
marker, the user can drill down on
individual data elements to see data
element details, including playing
audio or video clips associated
with the data element. In animation
mode, the application plays a
movie of markers appearing or
moving on the display within a
time interval specified by the user.
The result is that by spatially
juxtaposing multiple feeds or by
animating them, the user can see the geographical and temporal relationship between data available from multiple
sources.

Figure 5. Rich Feeds Browser Showing Two Feeds in San Diego, California

The User ID and Password entered by the user determines the list of feeds returned by the server. The policy defined
at the server is to return three feeds if the user enters no credentials. If the user enters police credentials, the server
returns the three feeds in addition to the police camera feed.

DISCUSSION

Within a Rich Services framework, there is room for numerous strategic decisions based on business objectives. For
example, the architecture shown in Figure 3 is not the only one that can fit the Rich Feeds requirements and achieve
the goals of separated concerns and loosely coupled crosscutting processing. We could have chosen a similar
architecture, which would have the Producer and Consumer systems accessing the database POJO through the
Integration system’s Service/Data Connector instead of directly across the ESB. This would have required that the
Producer and Consumer systems adhere to the services defined at the Connector, or that services compliant with the
Producer and Consumer systems be exposed through the Connector. We chose our architecture for efficiency
reasons: our Producer and Consumer modules create non-standards-based messages directly consumable by the
database POJO. To match this using a Service/Data Connector path would require that standards-based messages
arriving at or leaving from the Connector undergo transformation to and from the internal message format.
Alternately, we could have chosen to expose the internal message interface at the Service/Data Connector, and then

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008
F. Fiedrich and B. Van de Walle, eds.

573

Demchak et al. Rich Feeds for RESCUE

implemented adapters outside of the Rich Service. There is no advantage to this if we could avoid publishing these
interfaces by encapsulating them within the Integration system.

Much of the functionality of Rich Feeds could be achieved in a database-centric application framework such as
Oracle’s Application Development Framework (Oracle Corporation, 2007), and we could have designed Rich Feeds
along these lines. However, a Rich Services framework was chosen because it offers an end-to-end development
process, and architecture-level distribution of services across several computing platforms, support for parallel
execution (when appropriate), and flexible exploitation of COTS.

Additionally, the Rich Feeds system could have been implemented purely as an orchestration (Janssen, M,
Gortmaker, J., & Wagenaar, R.W., 2006) involving the Producer, Consumer, and database RASs. However, this
would have required explicitly orchestrating the crosscutting concerns implemented in the authentication,
authorization, and logging RISs. This explicit orchestration would have been more complex and less maintainable
than the router-based interceptor method inherent in the Rich Services pattern. It is possible that crosscutting
concerns could have been gracefully intermixed with orchestration in an AO4BPEL implementation (Charfi, A. and
Mezini, M., 2007), but that possibility was not explored.

OPPORTUNITIES

Under the RESCUE award, we continue to evolve Rich Feeds in order to enable more flexible access to realtime and
archival data. We have opportunities to incorporate Consumers such as Google Earth, Yahoo Pipes, and Microsoft
Office. To support Yahoo Pipes, we would add a streaming interface to the Integration system’s Service/Data
Connector. To support Microsoft Office, we would realize the ODBC interface in the Service/Data Connector.

We hope to further develop the authentication and authorization RISs so as to demonstrate more flexible routing
policies within the Mule ESB and ActiveMQ systems. Currently, for the sake of demonstration of policy evaluation
within the RISs, the password and capabilities databases exist and are hard-coded within the authorization and
authentication RISs themselves, and then are used within Rich Feeds’ existing policy model. We hope to move them
to a separate database, thereby leveraging separate policy definition facilities that can be employed quickly and
easily during an emergency.

Currently, no data is being exchanged under encryption. Opportunities exist to secure links between the Integration
system Rich Service and the Consumer and Procedure Rich Services.

RESULTS AND CONCLUSION

The Rich Feeds system was initially demonstrated and used in the Emergency Operations Center (EOC) at an active
shooter drill in October, 2007 at the University of California, San Diego. In addition to showing the location of
various assets, it demonstrated a live camera feed generated from a remote control robot traversing the crime scene.
The system was generally well received.

The success of the Rich Feeds system is a demonstration that a Rich Services architecture can be used to integrate
data from diverse sources in order to enable discovery by diverse stakeholders either in real time or archivally.

Equally important is the ability to evolve Rich Feeds quickly, reliably, and without risking code breakage. To that
end, we demonstrated the creation of Producer and Consumer components for a new feed in less than two hours, and
without breaking existing Producer and Consumer functionality. (We added the HPWREN camera feeds in order to
support discovery during the San Diego Firestorm of October, 2007.)

Additionally, while early versions of Rich Feeds did not implement authentication and authorization, we added these
features in less than a day. Besides creating the infrastructure services for these concerns, only the message routing
and the AJAX application were changed – there was no impact on any of the data producers or on any other Rich
Services.

We take these experiences as corroboration of our premise that the separation of concerns possible in a Rich
Services architecture enables rapid and reliable integration of new data sources, which can be reprised on demand
during emergencies in order to achieve situational awareness. The Rich Services development process allowed the
new domain and crosscutting requirements to be leveraged into the existing logical architecture smoothly and
expeditiously, while giving high confidence that existing capabilities would not be compromised.

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008
F. Fiedrich and B. Van de Walle, eds.

574

Demchak et al. Rich Feeds for RESCUE

Proceedings of the 5th International ISCRAM Conference – Washington, DC, USA, May 2008
F. Fiedrich and B. Van de Walle, eds.

While the existing AJAX interface enables the location- and time-based integration of data, numerous other
emergency and research scenarios remain to be explored. The Rich Services architecture and development process
provide Rich Feeds with a solid basis on which to expand access to more data sources, improve accessibility,
address more complex stakeholder concerns, and to do so quickly and reliably.

ACKNOWLEDGMENTS

Our work was partially supported by the NSF within the projects “RESCUE” (award #03311690), “Responsphere”
(award #0403433), and “ASOSA: Automotive Service-Oriented Software and Systems Engineering” (award
#CCF0702791), as well as by funds from the California Institute for Telecommunications and Information
Technology (Calit2). We are also grateful for the helpful comments of our anonymous reviewers.

REFERENCES

1. Arrott, M. , Demchak, B., Ermagan, V., Farcas, C., Farcas, E., Krüger, I.H., and Menarini, M. (2007) Rich
Services: The Integration Piece of the SOA Puzzle. Proceedings of the IEEE International Conference on Web
Services (ICWS), Salt Lake City, Utah.

2. Baker, J. (2002) The High Performance Wireless Research and Education Network: An Overview.
http://hpwren.ucsd.edu/info/images/baker.doc.

3. Calit2 RESCUE Project (2007) http://www.itr-rescue.org.
4. Calit2 RESCUE Rich Feeds (2007) http://rescue.calit2.net.
5. Calit2 RESCUE Traffic (2007) http://traffic.calit2.net.
6. Charfi, A. and Mezini, M. (2007) AO4BPEL: An Aspect-oriented Extension to BPEL. Springer Netherlands.

World Wide Web Vol. 10, No. 3, pp. 309-344.
7. Demchak, B., Farcas, C., Farcas, E., and Krüger, I. H. (2007) The Treasure Map for Rich Services. Proceedings

of the 2007 IEEE International Conference on Information Reuse and Integration (IRI), Las Vegas, NV.
8. Ermagan, V., Farcas, C., Farcas, E., Krüger, I. H., and Menarini, M. (2007) A Service-Oriented Blueprint for

COTS Integration: the Hidden Part of the Iceberg. Proceedings of the ICSE workshop on Incorporating COTS
Software into Software Systems: Tools and Techniques (ICSE ’07), Minneapolis, MN.

9. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional.

10. Hohpe, G. and Woolf, B. (2004) Enterprise Integration Patterns: Designing, Building, and Deploying. Addison-
Wesley Professional.

11. Janssen, M., Gortmaker, J., & Wagenaar, R.W. (2006) Web Service Orchestration in Public Administration:
Challenges, Roles and Growth Stages. Information Systems Management Vol. 23, No. 2, pp. 44-55.

12. Krüger, I. H. (2004) Service Specification with MSCs and Roles. Proceedings of the IASTED International
Conference on Software Engineering (IASTED SE’04), Innsbruck, Austria.

13. Krüger, I. H., Mathew, R., Meisinger, M. (2006) Efficient Exploration of Service-Oriented Architectures Using
Aspects. Proceedings of the 28th International Conference on Software Engineering (ICSE ’06), Shanghai,
China.

14. Microsoft Corporation (2007) http://support.microsoft.com/kb/110093.
15. MuleSource (2007) http://mule.mulesource.org/wiki/display/MULE/Home.
16. Oracle Corporation (2007) http://www.oracle.com/technology/products/adf/index.html.
17. Schmidt, D., Stal, M., Rohnert, H., and Buschmann, F. (2000) Pattern-Oriented Software Architecture: Patterns

for Concurrent and Networked Objects. Wiley & Sons.

575

http://hpwren.ucsd.edu/info/images/baker.doc
http://www.itr-rescue.org/
http://rescue.calit2.net/
http://traffic.calit2.net/
http://support.microsoft.com/kb/110093
http://mule.mulesource.org/wiki/display/MULE/Home
http://www.oracle.com/technology/products/adf/index.html

	ABSTRACT
	Keywords

	INTRODUCTION
	The Challenges

	A SERVICE-ORIENTED APPROACH
	Rich Services
	Use of Rich Services in Rich Feeds
	Development Methodology

	A RICH FEEDS PROTOTYPE
	DISCUSSION
	OPPORTUNITIES
	RESULTS AND CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

